A Memory-Based Tagger for Polish

Adam Radziszewski
Tomasz Śniatowski

Institute of Informatics
Wrocław University of Technology
Outline

- Tagging Polish
- Memory-Based Tagging
- Proposed algorithm
- Implementation
- Evaluation
- Simple majority voting
- Conclusions
Tagging Polish: background

- **POS tagging**: assigning morpho-syntactic tags to tokens
- Rich inflection → tags specify Parts of Speech + inflectional properties, such as grammatical case, verb aspect
- MSD (Morpho-Syntactic Description) tagging
- Two large manually annotated corpora for Polish:
 - **IPI PAN Corpus**: 880,000-token manually annotated part
 - **National Corp. of Polish**: 1220,000-token manually ann. part
 - Both have similar tagsets
Each grammatical class (~POS) designates a set of attributes (gram. categories) whose values must be given.

E.g. nouns are specified for number, gender and case.

Over 30 classes and over 10 attributes in both tagsets.

Over a thousand different tags appearing.

- subst:sg:nom:f — a singular, nominative, feminine noun
- praet:pl:f:imperf — a plural, feminine, imperfective past verb
Two popular taggers made specifically for Polish

- **TaKIPI** *(Wrocław Univ. of Technology)*
 - Small set of hand-written rules
 - Substantial number of decision trees to acquire rules from ref. corp.
 - Hard-coded to the IPI PAN Corpus tagset

- **PANTERA** *(Inst. of Comp. Sci, Polish Academy of Sciences)*
 - Modified version of Brill's transformation-based learning
 - Configurable tagset

Both assume two-stage operation: morph. analysis and contextual disambiguation (tag elimination)

Both employ tiered tagging (tag parts dealt with separately)
Memory-Based Learning (MBL): storing training examples without generalisation

Classification of a new instance:
- k nearest neighbours retrieved using a given similarity metric
- majority voting used to get the class label (possibly with a distance weighting scheme)

Memory-Based Tagging:
- Context of each token represented as fixed-width feature vector (e.g. surrounding wordforms, ambiguity classes)
- A popular module called MBT used directly for Polish gave unacceptable results (86.9% Weak Correctness)
Proposed algorithm (1)

- **Idea**: benefit from the positional character of the tagset
- **Training**: results in a separate *case base* for grammatical class and each tagset attribute (tiered tagging)
- **Morphological analysis first**: we deal only with disambiguation here
- **Parametrised with a set of features** for each attribute
 - **Feature** — function *token context* \rightarrow set of *string/symbol* values
 - E.g. possible values of grammatical case of the token preceding the one being disambiguated (*position* = -1)
- **Parameters of the MBL algorithm** (k, sim. metric, weighting)
Proposed algorithm (2)

TRAIN (sentence)

- For attr in [class, attr_1, attr_2, …, attr_k]:
 - For each token in sentence:
 - if token ambiguous w.r.t attr:
 - GEN EXAMPLE for token into case_base(attr):
 <features(attr), correct value of attr>
 - remove tags from token with incorrect values of attr
Example:

- Training examples generated
- Incorrect values removed

Now \texttt{attr} = \textit{number} (values: \texttt{sg} or \texttt{pl})

Example generation (current pos = \texttt{tok3}):

- \texttt{class[\text{-1}]} = \{\texttt{qub}\} \quad \# \ texttt{tok2}
- \texttt{class[0]} = \{\texttt{subst}\} \quad \# \ texttt{tok3}
- \texttt{class[+1]} = {} \quad \# \ out\ of\ sent

\begin{align*}
\text{number}[-1] &= {} \quad \# \ texttt{tok2} \\
\text{number}[0] &= \{\texttt{sg, pl}\} \quad \# \ texttt{tok3} \\
\text{number}[+1] &= {} \quad \# \ out\ of\ sent
\end{align*}

Correct class label = \texttt{pl}

\begin{align*}
\text{Leave only tags: } \text{number}(\texttt{tok3}) &= \texttt{pl} \\
\text{subst:pl:nom:f} \\
\text{subst:pl:gen:f} \\
\text{subst:pl:acc:f} \\
\text{subst:pl:voc:f}
\end{align*}

Then \texttt{attr} = \textit{case} (values: \texttt{nom, gen, acc, …})
Example:

number has been dealt with
- training examples generated,
- incorrect values removed

now attr = case (values: nom, gen, dat, acc, loc, inst, voc)

Example:

Boję myszy

```
1  Boję
fin: sg:pri:imperf
subst: sg:acc:f

2  się
qub

3  myszy (I'm afraid of mice)
subst: sg:gen:f
subst: sg:dat:f
subst: sg:loc:f
subst: sg:voc:f
subst: pl:nom:f
```

```
 subst: pl:gen:f ← gold standard
 subst: pl:acc:f
 subst: pl:voc:f
```

```
case(tok1) = {} case(tok2) = {} No ambiguity here No ambiguity here
```

Example generation (current pos = tok3):

```
class[-1] = {qub}  # tok2
class[0] = {subst}  # tok3
class[+1] = {}  # out of sent
number[-1] = {}  # tok2
number[0] = {pl}  # tok3
number[+1] = {}  # out of sent
```

Correct class label = pl

Leave only tags: case(tok3) = gen subst: pl:gen:f

Then attr = ...
Proposed algorithm (3)

DISAMBIGUATE (*sentence*)

- For *attr* in [class, attr_1, attr_2, ..., attr_k]:
 - For each *token* in *sentence*:
 - if *token* ambiguous w.r.t *attr*:
 - *wanted_val* = \text{CLASSIFY}(token, sentence, case_base(attr))
 - if *wanted_val* in values of *attr* in *token*:
 - remove tags from *token* with other values of *attr*
 - For each *token* in *sentence*:
 - Force one tag per in *token* if multiple left (prefer ‘tagset-first’)
Implementation

- **WMBT**: Wrocław Memory-Based Tagger (GPL'ed)
- 421 lines of Python code, using:
 - **TiMBL** (MBL classifier, Tilburg University)
 - **WCCL** (feature extraction formalism & toolkit)
- Features currently employed
 - **Class**, **number**, **gender** and **case** in window (-3, -2, -1, 0, 1, 2)
 - Wordforms in the window if frequent in training data (500 most frequent)
 - Agreement checks: (-1,0), (0,1), (-2,-1,0), (-1, 0, 1), (0, 1, 2)
 - Values (amb. class) of the attribute being disambiguated
- **TiMBL** parameters: $k=11$, MVD metric, IG weighting, IL
Evaluation

- Methodology from Śniatowski & Piasecki (2011)
 - 10 random splits into training (90%) and testing (10%) parts
 - We report values averaged across ten runs
 - Assessment of disambiguation capabilities
- IPI PAN Corpus: some tokens assigned multiple ref. tags
 - TaKIPI may output multiple tags per token
 - Weak Correctness: %tokens where sets of tags returned intersects with sets of tags in the gold standard
- National Corpus of Polish: always one ref. tag per token
 - Accuracy: %tokens tagged exactly as in gold standard
Evaluation (2)

IPI PAN Corpus

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Weak Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaKIPI</td>
<td>92.93%</td>
</tr>
<tr>
<td>PANTERA</td>
<td>92.98%</td>
</tr>
<tr>
<td>WMBT</td>
<td>93.16%</td>
</tr>
</tbody>
</table>

National Corpus of Polish 1.0

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANTERA</td>
<td>92.95%</td>
</tr>
<tr>
<td>WMBT</td>
<td>92.98%</td>
</tr>
</tbody>
</table>

Slow tagging: 372 tokens/s (bottleneck: MBL classifier)
Fast training: 2280 tokens/s
(measured on an Intel i7 machine)
Simple majority voting

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Weak Corr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TaKIPI</td>
<td>92.93%</td>
</tr>
<tr>
<td>PANTERA</td>
<td>92.98%</td>
</tr>
<tr>
<td>WMBT</td>
<td>93.16%</td>
</tr>
<tr>
<td>RFTagger</td>
<td>89.78%</td>
</tr>
<tr>
<td>Maxent</td>
<td>89.70%</td>
</tr>
<tr>
<td>Best-3 3-way voting</td>
<td>93.96%</td>
</tr>
<tr>
<td>5-way voting</td>
<td>94.32%</td>
</tr>
</tbody>
</table>

IPI PAN Corpus

<table>
<thead>
<tr>
<th>Tagger</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>PANTERA</td>
<td>92.95%</td>
</tr>
<tr>
<td>WMBT</td>
<td>92.98%</td>
</tr>
<tr>
<td>RFTagger</td>
<td>89.09%</td>
</tr>
<tr>
<td>Voting</td>
<td>94.11%</td>
</tr>
</tbody>
</table>

National Corpus of Polish 1.0
Conclusions

- MBL applied to tagging Polish gives state-of-the-art results
- Practical result: WMBT, a configurable tagger for Polish
- Inclusion of WMBT boosts performance of the ensemble
- Further work:
 - More sophisticated features, long distance dependencies
 - Find optimal TiMBL parameters
 - Find optimal order of attribute disambiguation
 - Evaluate Polish taggers under ‘natural’ circumstances — joint work with Szymon Acedański (PANTERA)
Thank you for your attention

WMBT is available at http://nlp.pwr.wroc.pl/redmine/projects/wmbt/wiki

References: